131 research outputs found

    Optimal Placement of Valves in a Water Distribution Network with CLP(FD)

    Full text link
    This paper presents a new application of logic programming to a real-life problem in hydraulic engineering. The work is developed as a collaboration of computer scientists and hydraulic engineers, and applies Constraint Logic Programming to solve a hard combinatorial problem. This application deals with one aspect of the design of a water distribution network, i.e., the valve isolation system design. We take the formulation of the problem by Giustolisi and Savic (2008) and show how, thanks to constraint propagation, we can get better solutions than the best solution known in the literature for the Apulian distribution network. We believe that the area of the so-called hydroinformatics can benefit from the techniques developed in Constraint Logic Programming and possibly from other areas of logic programming, such as Answer Set Programming.Comment: Best paper award at the 27th International Conference on Logic Programming - ICLP 2011; Theory and Practice of Logic Programming, (ICLP'11) Special Issue, volume 11, issue 4-5, 201

    A CHR-based Implementation of Known Arc-Consistency

    Full text link
    In classical CLP(FD) systems, domains of variables are completely known at the beginning of the constraint propagation process. However, in systems interacting with an external environment, acquiring the whole domains of variables before the beginning of constraint propagation may cause waste of computation time, or even obsolescence of the acquired data at the time of use. For such cases, the Interactive Constraint Satisfaction Problem (ICSP) model has been proposed as an extension of the CSP model, to make it possible to start constraint propagation even when domains are not fully known, performing acquisition of domain elements only when necessary, and without the need for restarting the propagation after every acquisition. In this paper, we show how a solver for the two sorted CLP language, defined in previous work, to express ICSPs, has been implemented in the Constraint Handling Rules (CHR) language, a declarative language particularly suitable for high level implementation of constraint solvers.Comment: 22 pages, 2 figures, 1 table To appear in Theory and Practice of Logic Programming (TPLP

    Logic Programming approaches for routing fault-free and maximally-parallel Wavelength Routed Optical Networks on Chip (Application paper)

    Get PDF
    One promising trend in digital system integration consists of boosting on-chip communication performance by means of silicon photonics, thus materializing the so-called Optical Networks-on-Chip (ONoCs). Among them, wavelength routing can be used to route a signal to destination by univocally associating a routing path to the wavelength of the optical carrier. Such wavelengths should be chosen so to minimize interferences among optical channels and to avoid routing faults. As a result, physical parameter selection of such networks requires the solution of complex constrained optimization problems. In previous work, published in the proceedings of the International Conference on Computer-Aided Design, we proposed and solved the problem of computing the maximum parallelism obtainable in the communication between any two endpoints while avoiding misrouting of optical signals. The underlying technology, only quickly mentioned in that paper, is Answer Set Programming (ASP). In this work, we detail the ASP approach we used to solve such problem. Another important design issue is to select the wavelengths of optical carriers such that they are spread across the available spectrum, in order to reduce the likelihood that, due to imperfections in the manufacturing process, unintended routing faults arise. We show how to address such problem in Constraint Logic Programming on Finite Domains (CLP(FD)). This paper is under consideration for possible publication on Theory and Practice of Logic Programming.Comment: Paper presented at the 33nd International Conference on Logic Programming (ICLP 2017), Melbourne, Australia, August 28 to September 1, 2017. 16 pages, LaTeX, 5 figure

    Improved filtering for the Euclidean Traveling Salesperson Problem in CLP(FD)

    Get PDF
    The Traveling Salesperson Problem (TSP) is one of the best-known problems in computer science. The Euclidean TSP is a special case in which each node is identified by its coordinates on the plane and the Euclidean distance is used as cost function. Many works in the Constraint Programming (CP) literature addressed the TSP, and use as benchmark Euclidean instances; however the usual approach is to build a distance matrix from the points coordinates, and then address the problem as a TSP, disregarding the information carried by the points coordinates for constraint propagation. In this work, we propose to use geometric information, present in Euclidean TSP instances, to improve the filtering power. In order to have a declarative approach, we implemented the filtering algorithms in Constraint Logic Programming on Finite Domains (CLP(FD))

    Deciding the Consistency of Branching Time Interval Networks

    Get PDF
    Allen’s Interval Algebra (IA) is one of the most prominent formalisms in the area of qualitative temporal reasoning; however, its applications are naturally restricted to linear flows of time. When dealing with nonlinear time, Allen’s algebra can be extended in several ways, and, as suggested by Ragni and Wölfl, a possible solution consists in defining the Branching Algebra (BA) as a set of 19 basic relations (13 basic linear relations plus 6 new basic nonlinear ones) in such a way that each basic relation between two intervals is completely defined by the relative position of the endpoints on a tree-like partial order. While the problem of deciding the consistency of a network of IA-constraints is well-studied, and every subset of the IA has been classified with respect to the tractability of its consistency problem, the fragments of the BA have received less attention. In this paper, we first define the notion of convex BA-relation, and, then, we prove that the consistency of a network of convex BA-relations can be decided via path consistency, and is therefore a polynomial problem. This is the first non-trivial tractable fragment of the BA; given the clear parallel with the linear case, our contribution poses the bases for a deeper study of fragments of BA towards their complete classification

    Multi-Criteria Optimal Planning for Energy Policies in CLP

    Full text link
    In the policy making process a number of disparate and diverse issues such as economic development, environmental aspects, as well as the social acceptance of the policy, need to be considered. A single person might not have all the required expertises, and decision support systems featuring optimization components can help to assess policies. Leveraging on previous work on Strategic Environmental Assessment, we developed a fully-fledged system that is able to provide optimal plans with respect to a given objective, to perform multi-objective optimization and provide sets of Pareto optimal plans, and to visually compare them. Each plan is environmentally assessed and its footprint is evaluated. The heart of the system is an application developed in a popular Constraint Logic Programming system on the Reals sort. It has been equipped with a web service module that can be queried through standard interfaces, and an intuitive graphic user interface.Comment: Accepted at ICLP2014 Conference as Technical Communication, due to appear in Theory and Practice of Logic Programming (TPLP

    A Bilevel Mixed Integer Linear Programming Model for Valves Location in Water Distribution Systems

    Get PDF
    The positioning of valves on the pipes of a Water Distribution System (WDS) is a core decision in the design of the isolation system of a WDS. When closed, valves permit to isolate a small portion of the network, so called a sector, which can be de-watered for maintenance purposes at the cost of a supply disruption. However, valves have a cost so their number is limited, and their position must be chosen carefully in order to minimize the worst-case supply disruption which may occur during pipe maintenance. Supply disruption is usually measured as the undelivered user demand. When a sector is isolated by closing its boundary valves, other portions of the network may become disconnected from the reservoirs as a secondary effect, and experience supply disruption as well. This induced isolation must be taken into account when computing the undelivered demand induced by a sector isolation. While sector topology can be described in terms of graph partitioning, accounting for induced undelivered demand requires network flow modeling. The aim of the problem is to locate a given number of valves at the extremes of the network pipes so that the maximum supply disruption is minimized. We present a Bilevel Mixed Integer Linear Programming (MILP) model for this problem and show how to reduce it to a single level MILP by exploiting duality. Computational results on a real case study are presented, showing the effectiveness of the approach

    Improving Quality and Efficiency in Home Health Care: an application of Constraint Logic Programming for the Ferrara NHS unit

    Get PDF
    Although sometimes it is necessary, no one likes to stay in a hospital, and patients who need to stay in bed but do not require constant medical surveillance prefer their own bed at home. At the same time, a patient in a hospital has a high cost for the community, that is not acceptable if the patient needs service only a few minutes a day. For these reasons, the current trend in Europe and North-America is to send nurses to visit patients in their home: this choice reduces costs for the community and gives better quality of life to patients. On the other hand, it introduces the combinatorial problem of assigning patients to the available nurses in order to maximize the quality of service, without having nurses travel for overly long distances. In this paper, we describe the problem as a practical application of Constraint Logic Programming. We first introduce the problem, as it is currently addressed by the nurses in the National Health Service (NHS) in Ferrara, a mid-sized city in the North of Italy. Currently, the nurses solve the problem by hand, and this introduces several inefficiencies in the schedules. We formalize the problem, obtained by interacting with the nurses in the NHS, into a Constraint Logic Programming model. In order to solve the problem efficiently, we implemented a new constraint that tackles with the routing part of the problem. We propose a declarative semantics for the new constraint, and an implementation based on an external solver

    The Horn Fragment of Branching Algebra

    Get PDF
    Branching Algebra is the natural branching-time generalization of Allen's Interval Algebra. As in the linear case, the consistency problem for Branching Algebra is NP-hard. Being relatively new, however, not much is known about the computational behaviour of the consistency problem of its sub-algebras, except in the case of the recently found subset of convex branching relations, for which the consistency of a network can be tested via path consistency and it is therefore deterministic polynomial. In this paper, following Nebel and BĂĽrckert, we define the Horn fragment of Branching Algebra, and prove that it is a sub-algebra of the latter, being closed under inverse, intersection, and composition, that it strictly contains both the convex fragment of Branching Algebra and the Horn fragment of Interval Algebra, and that its consistency problem can be decided via path consistency. Finally, we experimentally prove that the Horn fragment of Branching Algebra can be used as an heuristic for checking the consistency of a generic network with a considerable improvement over the convex subset
    • …
    corecore